 # PythonCrank 1

``````# CRANK_01.py
# Calculation of Dynamic Heat Flow
# Example 1 in Bagda, Dlabal, Öztürk
# Calculation of temperature change in a wall  of cellular concrete
# at 20 °C,  if one side is cooled down to 0 °C.
# System design by Engin Bagda, Python programming by Erkam Talha Öztürk
# Version 2020_07_03

# Crank Nicolson function
def CrankNicolson():
e = 0
f = Temp
for i in range (1, n-1, 1): # n-1 because string has to run until i=19
r = Lambda[i]*dTime / (Wkap[i]*Rho[i]*x[i]*x[i])
K1 = Lambda[i-1]*x[i] / (Lambda[i]*x[i-1])
K2 = Lambda[i]*x[i+1] / (Lambda[i+1]*x[i])
a = r
b = 2 + (2*r)
c = r
d = (a * Temp[i-1]) + (2-(2*r)) * Temp[i] + (c*Temp[i+1])
e[i] = c / (b - (a*e[i-1]))
f[i] = (d + a*f[i-1]) / (b - a*e[i-1])

# Thomas algorithm
def ThomasAlgorithm():
for i in range (n-2, 0, -1): # n-1 because string has to start i=18
Temp[i] = (e[i]*Temp[i+1]) + f[i]

# Definitions
import numpy as arr # to set up arrays
global e, f, r, K1, K2, a, b, c, d, e, f # in Ctank Nicolsen function
global dTemp # in Thomas algorithm
global n, x, Temp, Lambda, Rho, Wkap, dTime # in main run

n = 20 # index for layers from i=0 to i=20

x = arr.empty(n)
e = arr.empty(n)
f = arr.empty(n)
Temp = arr.empty(n)
Lambda = arr.empty(n)
Rho = arr.empty(n)
Wkap = arr.empty(n)

# Setup of conditions and  material properties

dTime = 60.00 # s, duration of the time steps

for i in range (0, n, 1): # string stops at i=n-1
x[i] = 0.010 # thickness of each element
Lambda[i] = 0.160 # thermal conductivity (W/m/K)
Rho[i] = 550  # density (kg/m3)
Wkap[i] = 1000 # heat capacity (oule/m3)
Temp[i] = 20 #°C, primary definition

# Main run
for Time in range (0, 1440, 1): # ammount of time steps  24 hours x 60 minutes
Temp[n-1] = 0 # °C new temperature after 1 minute (boundary condition in elemnt i=n-1
CrankNicolson()
ThomasAlgorithm()

print("%4.0f, %6.1f, %8.1f, %8.1f, %8.1f, %8.1f, %8.1f, %8.1f, %6.1f " % (Time, Temp, Temp, Temp, Temp, Temp[n-4], Temp[n-3], Temp[n-2], Temp[n-1]))

# End of run
``````