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Calculation of Dynamic Heat Flow in Walls 

Engin Bagda, Milan Dlabal, Erkam Talha Öztürk  

 

Introduction 
Assessment of the energy balance of buildings depends on estimations of the temperature 
driven dynamic heat flow through walls between inside and outside.  ISO 13790:2008-03-01 
“Energy performance of buildings – Calculation of energy use for space heating and cooling” 
mentions different methods to calculate the dynamic heat transfer in walls at hourly 
changing temperatures.  

In this work the Crank-Nicolson Method in combination with the Thomas algorithm is used 
to calculate dynamic heat transfer through walls. 

 

Heat Flow Theory 
The heat Q [J] transferred between two points at the temperature difference ΔT [K],is 
proportional to their distance x [m], surface area A [m2], thermal conductivity 𝝀  [W/(m·K)] 
and duration of the flow Δt [s] (equation 1). 

𝑄 = 𝜆 ∙ 𝐴 ∙ ∆"
#
∙ ∆𝑡				[𝐽]         (1) 

Q : heat [J]   
𝝀 : thermal conductivity [W/(m·K)] 
A : surface area [m2] 
ΔT : temperature difference [K] 
Δt : duration of the heat transfer [s] 
x : distance between the two places where the heat transfer occurs [m], 

The heat flow 𝑸̇ [W] is the heat transferred per unit of time:  

𝑄̇ = $
∆%
= 𝜆	 ∙ 𝐴	 ∙ ∆"

#
  				[𝑊]          (2) 

𝑸̇ : heat flow [W = J/s]  

If the temperature difference changes in time, the heat flow becomes dynamic and changes 
as well. The dynamic heat flow depends on the heat capacity of the material.  

Example:  

A cup of hot coffee gets colder in time because of the temperature difference between 
coffee and the surrounding air. When the coffee has reached air temperature, ΔT [K] 
becomes zero and the heat flow stops. The time, in which the coffee reaches the 
surrounding air temperature is depending on the heat content Q [J] of the coffee. The heat 
content is proportional to the specific heat capacity cm [J/(kg·K)] and Temperature T [K] of 
the coffee (see equation 3). 
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𝑄 = 𝑐& 	 ∙ 	𝜌	 ∙ 𝑇 ∙ 𝑉							[𝐽]	         (3) 

Q  : heat content [J] 
cm  : specific heat capacity [J/(kg·K)] 
ρ  : density [kg/m3] 
T  : temperature [K] 
V :  volume [m3] 

 

Calculation of dynamic heat flow with the Crank-Nicolson method 

The Crank-Nicolson method is a finite difference method that can be used to calculate the 
dynamic heat flow numerically. This shall be demonstrated below. 

We assume there are 3 elements [i-1], [i] and [i+1] with equal thickness x [m]. Each element 
contains a certain amount of heat Q [J] and the heat is concentrated in the centre (see figure 
1). At the specific time [j]: 

- element [i-1] is at temperature Ti-1, j,  
- element [i] is at temperature Ti, j and  
- element [i+1] is at temperature Ti+1, j.  

 

Figure 1: Schematic view of the heat flow between three elements with thickness x 

In the duration Δt [s] the heat Qi [J] flows from element [i-1] to element [i] and the heat Qi+1 
[J] flows from element [i] to element [i+1]: 

𝑄' = 𝝀 ∙
𝑇'() − 𝑇'

𝑥 ∙ 𝐴 ∙ ∆𝑡									[𝐽] 

𝑄'*) = 𝝀 ∙
𝑇' − 𝑇'*)

𝑥 ∙ 𝐴 ∙ ∆𝑡						[𝐽] 

After a duration Δt at the time [j+1]: 

- element [i-1] is at temperature Ti-1, j+1,  
- element [i] is at temperature Ti, j+1 and  
- element [i+1] is at temperature Ti+1, j+1. 
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The Crank-Nicolson method assumes that the heat flow during the duration Δt is the static 
mean heat flow between the heat flow at time [j] and that at time [j+1]: 

𝑄̇' =	
$̇!,#*	$̇!,#$%

-
								[𝑊]         (4) 

𝑄̇'*) =	
$̇!$%,#*	$̇!$%,#$%

-
								[𝑊]        (5) 

In this time the heat content of element [i] changes by ∆𝑸 [J], when the incoming heat flow 
and the outgoing heat flow differ: 

∆𝑄' = (𝑄̇' − 𝑄̇'*)) 	 ∙ 	∆𝑡 

Using equations (4) and (5) for Qi and Qi+1: 

∆𝑄' = 𝝀 ∙ 𝐴	 ∙ 	 8𝑇'(),/ − 	2𝑇',/ +	𝑇'(),/*) − 	2𝑇',/*) +	𝑇'*),/ +	𝑇'*),/*); 	 ∙ 	
∆𝑡
2 ∙ 𝑥 

According to equation (3), the change in the heat content ∆𝑸𝒊 [J] of element [i] is dependent 
on the heat capacity 𝑐& [J/(kg·K)]: 

∆𝑄' =	𝑐& ∙ 𝜌 ∙ <𝑇',/*) − 𝑇',/= ∙ 𝐴 ∙ 𝑥 

This leads to: 

)
-
∙ 𝝀	∙	∆%
2&∙	3	∙#'

	8𝑇'(),/ − 	2 ∙ 𝑇',/ +	𝑇'(),/*) − 	2 ∙ 𝑇',/*) +	𝑇'*),/ +	𝑇'*),/*); 	= 	 <𝑇',/*) − 𝑇',/=  

With 𝒓 = 𝝀∙∆𝒕
𝒄𝒎∙𝝆∙𝒙𝟐

 being called the modem, this transforms to: 

&𝑟 ∙ 𝑇"#$,& − 	2 ∙ 𝑟 ∙ 𝑇",& + 	𝑟 ∙ 𝑇"#$,&'$ − 	2 ∙ 𝑟 ∙ 𝑇",&'$ + 	𝑟 ∙ 𝑇"'$,& + 	𝑟 ∙ 𝑇"'$,&'$- 	= 	 /2 ∙ 𝑇",&'$ − 2𝑇",&0 

Which can be written as equation (6): 

(2 + 2 ∙ 𝑟)	𝑇',/*) = 𝑟 ∙ 𝑇'(),/ + 	𝑟 ∙ 𝑇'(),/*) + 	𝑟 ∙ 𝑇'*),/ + 	𝑟 ∙ 𝑇'*),/*) + (2 − 2 ∙ 𝑟)𝑇',/   (6) 

This equation states, that the temperature of element [i] can be calculated at time [j+1], 
once the temperatures of elements [i-1], [i] and [i+1] are known at time [j] and the 
temperatures of elements [i-1] and [i+1] are known at time [j+1] (see table 1). 

 

Time Element 
 [i-1] [i] [i+1] 

[j] 
Ti-1, j 

known  
primary definition 

Ti, j 
known  

primary definition 

Ti+1, j 
known  

primary definition 

[j+1] 
Ti-1, j+1 
known 

boundary condition 

Ti, j+1 
unknown 

to calculate 

Ti+1, j+1 
known  

boundary condition 
 

Table 1: Definition of the temperature values T 



Calculation of Dynamic heat flow 2020_07_03 4 
 

The definition of the temperature values at time [j]=1 is called primary definition. The values 
for T [°C] in the boundary elements [i-1] and [i+1] are called boundary conditions. 

 

Calculation of the dynamic heat flow through more than 3 elements 

To calculate dynamic heat flow through a wall, this wall needs to be divided into n elements 
of thickness x [m] perpendicular to the heat flow.  

 

Figure 2: Partitioning of a system of n elements of thickness x  and the heat flow through 
them (T1  > Tn) 

If there are more than 3 elements (1 < i < n),  𝑻𝒊,𝒋*𝟏	 cannot be calculated the same way as 
shown by equation (6) as the temperatures 𝑻𝟐,𝒋*𝟏 to 𝑻𝒏(𝟏,𝒋*𝟏	are unknown and only the 
boundary conditions 𝑇),/*) and 𝑇<,/*) are known (see table 2).  

Time Element [i] 
 [1] [2] ... [i] … [n-1] [n] 

[j] 
T1, j 

known  
prim. def. 

T2, j 
known  

prim. def. 
… 

Ti, j 
known  

prim. def. 
… 

Tn-1, j 
known  

prim. def. 

Tn, j 
known  

prim. def. 

[j+1] 

T1, j+1 
known  
bound. 
cond. 

T2, j+1 
unknown  
to calc. 

… 
Ti, j+1 

unknown  
to calc. 

… 
Tn-1, j+1 

unknown  
to calc. 

Tn, j+1 
known  
bound. 
cond. 

Table 2: Definition of the temperature values T for a wall with n elements 

 

Equation (6) is rewritten as equation (7) with the temperatures at time [j+1] on the left-hand 
side and the temperatures at time [j] on the right-hand side.  

−	𝑟 ∙ 𝑇"#$,&'$ + (2 + 2 ∙ 𝑟) ∙ 𝑇",&'$ − 	𝑟 ∙ 𝑇"'$,&'$ = 𝑟 ∙ 𝑇"#$,& + (2 − 2 ∙ 𝑟) ∙ 𝑇",& + 	𝑟 ∙ 𝑇"'$,&      (7) 
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As the temperatures on the right-hand side of equation (7) are known, this is a tridiagonal 
problem which can be solved with the tridiagonal matrix algorithm (Thomas algorithm). 
Thus, the unknown temperatures on the left-hand side of equation (7) can be calculated.  

Equation (7) is rewritten as: 

𝑑' = 𝑎 ∙ 𝑇'(),/ + 𝑏 ∙ 𝑇',/ + 	𝑐 ∙ 𝑇'*),/          (8) 

With 

𝑎 = 𝑟 

𝑏 = 2 − 2 ∙ 𝑟 

𝑐 = 𝑟 

In matrix notation: 

D

𝑎
0
	

𝑏 𝑐 0 	 0
𝑎 𝑏 𝑐 	 	
	 ⋱ ⋱ ⋱ 	

0 	 	 𝑎 𝑏 𝑐

F 	 ∙ 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇),/
𝑇-,/
𝑇=,/
⋮

𝑇<(),/
𝑇<,/ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 	 M

𝑑-
𝑑=
⋮

𝑑<()

N 

This tridiagonal matrix is of size [𝑛		 × 		 (𝑛 − 2)] as the temperatures T1, j+1 and Tn, j+1 in the 
boundary layers (first and last layers of the wall) are known for time [j+1] and the 
temperatures from T2, j+1 to Tn-1, j+1 need to be calculated. 

The left-hand side of equation (8) can be written as:  

𝑑' =	−	𝐴 ∙ 𝑇'(),/*) + 𝐵 ∙ 𝑇',/*) − 	𝐶 ∙ 𝑇'*),/*)       (9) 

With 

𝐴 = 𝑟 

𝐵 = 2 + 2 ∙ 𝑟 

𝐶 = 𝑟 

In order to calculate the temperatures 𝑇',/*) a linear dependency from 𝑇'(),/*) is used: 

𝑇'(),/*) =	𝑒'(),/*) 	 ∙ 	𝑇',/*) +	𝑓'(),/*)         (10) 

𝑇',/*) =	𝑒',/*) 	 ∙ 	𝑇'*),/*) +	𝑓',/*)          (11) 

Using equation (10) to substitute 𝑇'(),/*) in equation (9) leads to: 

𝑑' =	−	𝐴 ∙ (𝑒'(),/*) 	 ∙ 	𝑇',/*) +	𝑓'(),/*)) + 𝐵 ∙ 𝑇',/*) − 	𝐶 ∙ 𝑇'*),/*)  

⇔ 		𝑇',/*) =	𝑇'*),/*) ∙ 	
>

?(@∙A!*%,#$%
+	B!*@	∙	C!*%,#$%

?(@	∙	A!*%,#$%
        (12) 

Comparing equations (11) and (12) yields in expressions for the factor 𝑒',/*) and 
constant	𝑓',/*): 
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𝑒',/*) =	
>

?(@∙A!*%,#$%
           (13) 

𝑓',/*) =		
B!*@	∙	C!*%,#$%
?(@	∙	A!*%,#$%

          (14) 

Solving the tridiagonal problem for the new temperatures at time [j+1] starts with a forward 
sweep (from i=1 to i=n) modifying the constants 𝑒',/*) and 𝑓',/*)	beginning with 𝑒),/*) = 0 
and 𝑓),/*) =	𝑇),/*) for the set boundary condition in element [1]. The solution is then 
obtained by back substitution (from i=n-1 to i=2) according to equation (11), starting with 
the boundary conditions in element n. 

The Crank-Nicolson algorithm might start to oscillate if the temperature differences are too 
high. It is therefore important, to keep an eye on the modem r. The system is stable when r 
has values smaller than 1. This can be reached as Δt and x are chosen accordingly. For the 
use of this algorithm for walls, a thickness of the elements of  x = 0,01 m and Δt = 60 s are 
appropriate and stable. To reduce the calculation time, Δt can be increased to 300 s if the 
differences between Ti-1,j, Ti,j and Ti+1,j are not too big and the system does not oscillate. 

 

Example for calculation in Python 

The Python code CRANK_01.py (version 2020.07.03) is an example to calculate the 
temperature change in a wall of cellular concrete with 0.2m thickness in time steps of 60 
seconds, when the temperature on one side decreases from 20°C to 0°C. The elements have 
a thickness of 0.01 m and the wall is virtually divided in 20 elements. The code contains an 
output command where the temperatures in the first and last 4 elements i[0],  i[1], i[2],  i[3], 
i[16], i[17], i[18], i[19] are printed for each time step. The first lines are important to control 
whether the system is oscillating or not.  
 
Note: 
If the time step is changed to 300 seconds in the code the system will oscillate until the 10th minute.  

Steady state is reached when the temperature differences between all layers are the same. 
In the example this is at minute 1402 where the temperature of the element i[1] is stable at 
18.9°C to one decimal place. The time to reach the steady state depends on the accuracy. 
One digit after the decimal point is suitable for walls, as the temperature is usually measured 
with an accuracy of +/- 0.1 °C.  

Dynamic heat flow through two materials 
 

Usually a wall consists of more than one material with different thermal conductivities and 
heat capacities. The heat flow between two different materials cannot be calculated by 
equations derived from equation (7). The problem can be solved by introducing two dummy 
elements D1 and D2 between the two layers of different materials and by the following 
assumptions:  
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Figure 3: Introduction of two dummy elements between element [1] and element [2] of 
different thermal conductivities and different element widths x1 and x2. TC is the contact 

temperature of the two elements on their common surface.  

1.) The dummy elements have the same thickness and thermal conductivity as their 
adjoining elements. 

2.) The contact temperature 𝑻𝑪𝟏	between the element and its dummy element is the mean 
value of the temperatures 𝑻𝟏	in the element [1] and the temperature 𝑇E) of the 
respective dummy element [D1]. The same applies for the element [2] with the dummy 
element [D2].  

3.) We assume that TC is the same for both elements [1] and [2]: (𝑇> = 𝑇>) = 𝑇>-)  and 
write equation 15: 
𝑇> =

"%*"+%
-

= "'*"+'
-

	   ⇒ 		𝑇E) = 𝑇- + 𝑇E- − 𝑇)     (15) 
4.) Further we assume that the heat flow density from element [1] to its dummy element 

[D1] is the same as the heat flow density received by element [2] from its dummy 
element [D2]: 

𝝀) ∙ 	
"%("+%
#%

= 𝝀- ∙ 	
"+'("'
#'

   ⟺			 𝝀%∙#'
𝝀'∙#%

	 ∙ (𝑇) − 𝑇E)) = 	𝑇E- − 𝑇-    (16) 

Substituting 𝑇E) from equation (16) with equation (15) results in: 

𝝀%∙#'
𝝀'∙#%

	 ∙ [	𝑇) − (𝑇- + 𝑇E- − 𝑇))] = 	𝑇E- − 𝑇-       (17) 

𝝀%∙#'
𝝀'∙#%

= 𝐾	            (18) 

K is called the coupling factor. Introducing K to equation (17) yields an expression for the 
temperature 𝑇E- on the dummy element [D2] on “left side” of element [2] in figure 3: 

𝑇E- =	
2 ∙ 𝐾 ∙ 𝑇) + (1 − 𝐾) ∙ 𝑇-

1 + 𝐾  

Generalized, K1 is the coupling factor between the element [i-1] and the element [i] (see 
equation 19):  

𝑇E(') =	
-∙H%∙"!*%*()(H%)∙"!

)*H%
          (19) 
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When the thermal conductivities 𝝀 and widths x of elements [i-1] and [i] are the same, the 
coupling factor K1 between element [i-1] and element [i] will become		𝐾) =

𝝀!*%∙#!
𝝀!∙#!*%

= 1.  

When the tridiagonal matrix algorithm sweeps through the elements [i+1] to element [i], the 
element composition will change on the “right” side of element [i] (see figure 3). We rename 
the dummy element “left” of element [i] to [Dleft] and introduce another dummy element on 
the “right” side of element [i] as [Dright]. The temperature of the dummy element [Dright] can 
be calculated by substituting 𝑇E(') in equation (19) with 𝑇E(I'JK%) 

𝑇E(I'JK%) =	
-∙H%∙"!*%*()(H%)∙"!

)*H%
        (20) 

To calculate TD(left) we use equation (15)  and replace  TD2 with TD(left). This leads to equation 
(21): 

𝑇E(LAC%) =	
-∙"!$%(()(H')∙"!

)*H'
          (21) 

In This case the coupling factors are given by equation (22) and (23).  

𝐾) =	
𝝀!*%∙#!
𝝀!∙#!*%

					 for the “left” side of element [i]     (22) 

𝐾- =	
𝝀!∙#!$%
𝝀!$%∙#!

   for the “right” side of element [i]     (23) 

As the dummy temperatures are a substitution for the temperatures of the neighboring 
elements of element [i], those temperatures can be introduced to the left side of equation 
(7): 

𝑑' = −	𝑟 ∙ 𝑇'(),/*) + (2 + 2𝑟) ∙ 𝑇',/*) − 	𝑟 ∙ 𝑇'*),/*) 

𝑑' = −	𝑟 ∙ (𝑇E(LAC%),/*)) + (2 + 2𝑟) ∙ 𝑇',/*) − 	𝑟 ∙ (𝑇E(I'JK%),/*)) 

𝑑' = −	𝑟 ∙ Z-∙H%∙"!*%,#$%*()(H%)∙"!,#$%
)*H%

[ + (2 + 2𝑟) ∙ 𝑇',/*) − 	𝑟 ∙ Z
-∙"!$%,#$%(()(H')∙"!,/*)

)*H'
[ (22) 

We introduce two new factors: 

𝐺) = 𝑟 ∙ )(H%
)*H%

   for the “left” side of element [i]     (25) 

𝐺- = 𝑟 ∙ )(H'
)*H'

   for the “right” side of element [i]     (26) 

After mathematical transformations, di can be expressed from equation (24) as:  

𝑑' = −(𝑟 − 𝐺)) ∙ 𝑇'(),/*) + (2 + 2𝑟 − 𝐺) + 𝐺-) ∙ 𝑇',/*) − (𝑟 + 𝐺-) ∙ 𝑇'*),/*)   (27) 

Or identical to equation (9) as: 

𝑑' =	−	𝐴 ∙ 𝑇'(),/*) + 𝐵 ∙ 𝑇',/*) − 	𝐶 ∙ 𝑇'*),/*)       (28) 

With new constants A, B and C: 

𝐴 = 𝑟 − 𝐺)            (29) 

𝐵 = 2 + 2 ∙ 𝑟 − 𝐺) + 𝐺-          (30) 
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𝐶 = 𝑟 + 𝐺-            (31) 

In order to calculate the factor 𝑒',/*) and constant 𝑓',/*) from the calculation of 𝑑'  at time [j] 
from the right side of equation (7), this side needs to be altered as well, introducing the 
dummy temperatures. This is done analogous to the left side shown above and yields in a 
similar expression: 

𝑑' = 	𝐴 ∙ 𝑇'(),/ + (2 − 2 ∙ 𝑟 + 𝐺) − 𝐺-) ∙ 𝑇',/ + 	𝐶 ∙ 𝑇'*),/       (32) 

Solving the tridiagonal problem for elements with different thicknesses x and thermal 
conductivities λ at time [j+1] computing starts with a forward sweep from element [1] to [n], 
modifying the constants 𝑒',/*) and 𝑓',/*)	beginning with 𝑒),/*) = 0 and 𝑓),/*) =	𝑇),/*) for 
the set boundary condition in element [1]. In order to do this the constants r, 𝐾), 𝐾-, 𝐺), 𝐺-, 
A, B and C need to be computed. The solution is then obtained by back substitution from 
element [n-1] to [2] according to equation (11), starting with the boundary conditions in 
element [n].  

When all “new” temperatures at the time [j+1] in all elements [2] to [n-1] are known, the 
heat flow Qi between two elements during Δt can be calculated with equation (33) derived 
from equation (1).  

𝑄' =
"(!,#$%)("(!$%,#$%)

.!
'∙0!

*
.!$%
'∙0!$%

∙ 𝐴 ∙ ∆𝑡						[𝐽]        (33) 

Or as heat flow density q in [W/m2] 

𝑞' =
"(!,#$%)("(!$%,#$%)

.!
'∙0!

*
.!$%
'∙0!$%

					[M
&']         (34) 

 

Example 2 

The Python code CRANK_02.py (version 2020.07.03) is an example to calculate the 
temperature change in a wall consisting of two different materials in time steps of 60 
seconds. The wall consists of 0.2 m cellular concrete, 0.05 m expanded polystyrene (EPS) and 
is virtually divided into 25 elements of 0.01 m thickness. The temperature in the element  
i[n-1] decreases from 20 °C to 0 °C. 

The output command prints the temperatures in the first and last 4 elements i[0],  i[1], i[2],  
i[3], i[16], i[17], i[18], i[19] and the heat flows between the elements i[0]-i[1], i[1]-i[2], i[2]-
i[3], i[3]-i[4], i[20]-i[21], i[21]-i[22], i[22]-i[23] and i[23]-i[24]. 

The steady state is reached at minute 5232 with the heat flow density of q = 7.99 W/m2.  

According to the heat equation it is expected that the steady state heat flow q is  

𝑞 = 	 ∆"
1%
0%
*1'0'

=	 -N
2,'2
2.%42*

2.25
2.265

= 7.47			 M
&'  
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q: Heat flow density [W/m2] 
λ: Thermal conductivity [W/(ṁ·K)] 
d: Thickness of the material [m] 
ΔT: Temperature difference [°C] 

The dynamic calculation in CRANK_02.py starts in the centre of the first element and ends in 
the centre of the last element. This results in an effective thickness of the cellular concrete 
part of 0.195m and the EPS part of 0.045m. Calculation with these values gives: 

𝑞		 = 	 -N
2,%75
2.%42*

2.285
2.265

= 7.99			 M
&'   

This is corresponding with the calculated dynamic heat flow in the steady state situation. 

The heat flow is calculated with two places behind the decimal point, because the thermal 
conductivities of building materials as well as the U-values are given with an accuracy of two 
decimals.  

It is recommended to check when the steady state heat flow is reached and to compare its 
value with the result of the static heat equation.  

In another paper we will address the differences between the real thicknesses of the 
materials and the thicknesses used in calculations according to the Crank-Nicolson 
algorithm. There we will also focus on the boundary conditions of the materials in thermal 
contact with fluid media like air. 

 

 

 

 

 

 


